Part Number Hot Search : 
CN6050 MUR8100E MM1333 MAX4120 A514RU TF841S OM350 DA221M
Product Description
Full Text Search
 

To Download V23990-P541-C29-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p541-*2*-pm flow pim 0 600v/6a clip-in housing trench fieldstop igbt's for low saturation losses optional w/o brc industrial drives embedded drives v23990-p541-a28-pm v23990-p541-a29-pm v23990-p541-c28-pm V23990-P541-C29-PM t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 28 t c =80c 37 t h =80c 33 t c =80c 50 maximum junction temperature t j max 150 c inverter transistor t h =80c 12 t c =80c 12 t h =80c 34 t c =80c 52 t sc t j 150c 6 s v cc v ge =15v 360 v 18 20 p tot gate-emitter peak voltage i 2 t w power dissipation per diode surge forward current i fsm condition a t j =25c 200 a 200 50 hz half sine wave features flowpim 0 housing schematic dc forward current i fav types input rectifier diode target applications i2t-value maximum ratings t j =t j max t j =t j max p tot a 2 s repetitive peak collector current dc collector current power dissipation per igbt maximum junction temperature short circuit ratings turn off safe operating area collector-emitter break down voltage a v t j =t j max t j =t j max vce 1200v, tj top max t p limited by t j max a 600 i c v ge i cpulse t j max v ce w a v c 175 t p =10ms 18 17mm housing 12mm housing copyright vincotech 1 revision: 4
v23990-p541-*2*-pm t j =25c, unless otherwise specified parameter sym bol value unit condition maximum ratings inverter diode t h =80c 12 t c = 80c 12 t h = 80c 2 6 t c = 80c 39 b rake transistor t h =80c 11 t c = 80c 12 t h = 80c 31 t c = 80c 47 t s c t j 150c 6 s v cc v ge =15v 36 0 v brake diode t h =80c 1 1 t c = 80c 12 t h = 80c 23 t c = 80c 35 t hermal properties in sulation properties v is t=2s dc vo ltage 4000 v min 12,7 mm min 12,7 mm cti >200 600 12 12 comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition cle arance -40+(tjmax - 25) c storage temperature t stg -40+125 c p eak repetitive reverse voltage w a a t p limited by t j max ma ximum junction temperature t j max 17 5 t j =t j max t p limited by t j max dc fo r ward current c t j =t j max a i f v rrm a i frm i frm v rrm v ce i cpuls i c v ge v p o wer dissipation per diode p tot t j =t j max t j =t j max dc for ward current i f repetitive peak forward current w 17 5 c maximum junction temperature peak repetitive reverse voltage repetitive peak forward current power dissipation per diode repetitive peak collector current 600 gate-emitter peak voltage p tot collector-emitter break down voltage v c w t p l imited by t j max t j =t j max 2 0 a 18 a 18 175 maximum junction temperature t j max t j =t j max sh ort circuit ratings turn off safe operating area dc collector current power dissipation per igbt vce 1200v, tj top max v a v t j max p tot 600 copyright vincotech 2 revision: 4
v23990-p541-*2*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,26 1,45 tj=125c 1,24 tj=25c 0,92 tj=125c 0,82 tj=25c 11 tj=125c 14 tj=25c tj=145c 1,1 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50m = 1 w/mk 2,10 k/w tj=25c 5 5,8 6,5 tj=150c tj=25c 1 1,52 2,1 tj=150c 1,7 tj=25c 0,06 tj=150c tj=25c 350 tj=150c tj=25c 12 tj=150c 10 tj=25c 8 tj=150c 11 tj=25c 118 tj=150c 134 tj=25c 87 tj=150c 116 tj=25c 0,07 tj=150c 0,10 tj=25c 0,15 tj=150c 0,19 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50m = 1 w/mk 2,78 k/w tj=25c 1 1,64 2,5 tj=150c 1,56 tj=25c 8 tj=150c 8 tj=25c 73 tj=150c 163 tj=25c 0,23 tj=150c 0,43 di(rec)max tj=25c 569 /dt tj=150c 338 tj=25c 0,04 tj=150c 0,09 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50m = 1 w/mk 3,68 k/w tj=25c pf ns a/s mws ns a nc na v ma v mws rgon=32 1500 300 300 6 0,00009 25 0 480 6 600 collector-emitter saturation voltage collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current reverse recovery time reverse recovered energy peak rate of fall of recovery current turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current rever se transfer capacitance diode forward voltage gate charge c ies 6 6 15 r gon=32 0 20 15 rgoff=16 f=1mhz c reverse current i r 30 30 30 v v m m a c haracteristic values forward voltage thr eshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t in put rectifier diode val ue conditions input capacitance o ut put capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage v ge(th) v ce(sat) i ces r gint i ges t f e on e off t d(on) i rrm v f c oss c rss q rr t rr q gate t r t d(off) v ce =v ge erec 0 15 6 v 368 t j=25c 11 28 none 42 copyright vincotech 3 revision: 4
v23990-p541-*2*-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max ch aracteristic values value co nditions tj=25c 5 5,8 6,5 tj=150c tj=25c 1 1,54 2,1 tj=150c 1,72 tj=25c 0,06 tj=150c tj=25c 350 tj=150c none tj=25c 11 tj=150c 11 tj=25c 8 tj=150c 11 tj=25c 112 tj=150c 127 tj=25c 87 tj=150c 100 tj=25c 0,08 tj=150c 0,11 tj=25c 0,14 tj=150c 0,17 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50m = 1 w/mk 3,06 k/w tj=25c 1 1,63 2,5 tj=150c 1,56 tj=25c 60 tj=150c tj=25c 7 tj=150c 7 tj=25c 96 tj=150c 165 tj=25c 0,23 tj=150c 0,23 di(rec)max tj=25c 442 /dt tj=150c 268 tj=25c 0,04 tj=150c 0,09 thermal resistance chip to heatsink per chip r thjh thermal grease thi ckness 50m = 1 w/mk 4,09 k/w 28 368 tj=25c tc=100c tc=100c tj=25c 600 600 300 25 300 6 6 6 thermistor i rrm diode forward voltage r ever se leakage current rgon=32 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time r gon=32 v f i r m a na ns pf m w s 6 20 15 0 0 rgon=32 rgoff=16 v ce =v ge f=1mhz i ges 0 15 15 480 ? r/r r100=1486 rated resistance r power dissipation constant deviation of r100 mw/k power dissipation p mw brake transistor nc c oss e on output capacitance c rss c ies integrated gate resistor peak rate of fall of recovery current peak reverse recovery current reverse recovered charge t f fall time t d(on) t r turn-off delay time t d(off) e off turn-on energy loss per pulse r gint turn-off energy loss per pulse ri se time turn-on delay time gate charge input capacitance q gate reverse transfer capacitance gat e-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage c ol lector-emitter cut-off incl diode gate emitter threshold voltage 30 0,00009 42 11 3,5 210 tj=25c tj=25c 5 -5 % 22000 mws c v a ns a/s a v v b-value b (25/50) tol. 3% t j =25c k b (25/100) tj=25c 4000 k b- value tol. 3% vincotech ntc reference a tj=25c copyright vincotech 4 revision: 4
v23990-p541-*2*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 out put inverter igbt figure 4 output inverter fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v o utput inverter typical output characteristics 0 5 10 15 20 25 30 0 1 2 3 4 v ce (v) i c (a) 0 1 2 3 4 5 6 7 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 2 4 6 8 10 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision:4
v23990-p541-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 32 i c = 6 a r go ff = 16 figur e 7 out put inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 32 i c = 6 a output inverter e on high t e off high t e on low t e off low t 0,00 0, 05 0,10 0,15 0,20 0,25 0,30 0 2 4 6 8 10 12 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0 ,1 0,2 0,3 0,4 0 50 100 150 200 250 300 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0, 03 0,06 0,09 0,12 0,15 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,00 0 ,02 0,04 0,06 0,08 0,10 0,12 0 50 100 150 200 250 300 r g ( w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 re v ision: 4
v23990-p541-*2*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 12 5 c t j = 125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 32 i c = 6 a r go ff = 16 figur e 11 out put inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v r = 30 0 v v ge = 15 v i f = 6 a r g on = 32 v ge = 15 v output inverter t doff t f t don t r 0,00 0, 01 0,10 1,00 0 2 4 6 8 10 12 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0, 1 0,2 0,3 0,4 0 50 100 150 200 250 300 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0, 01 0,10 1,00 0 50 100 150 200 250 300 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,00 0, 05 0,10 0,15 0,20 0,25 0 2 4 6 8 10 12 i c (a) t rr ( m s) 25 / 125 25 / 125 copyright vincotech 7 re v ision: 4
v23990-p541-*2*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at a t t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v r = 30 0 v v ge = 15 v i f = 6 a r g on = 32 v ge = 15 v figure 15 out put inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v r = 30 0 v v ge = 15 v i f = 6 a r g on = 32 v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 2 4 6 8 10 1 2 0 50 100 150 200 250 300 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0 , 1 0,2 0,3 0,4 0,5 0 50 100 150 200 250 300 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 2 4 6 8 10 0 2 4 6 8 1 0 12 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0, 1 0,2 0,3 0,4 0,5 0,6 0 2 4 6 8 10 12 i c (a) q rr (mc) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 8 re v ision: 4
v23990-p541-*2*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v r = 30 0 v v ge = 15 v i f = 6 a r g on = 32 v ge = 15 v figure 19 out put inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 2,7 8 k/w r thjh = 3,6 8 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 3,3e+00 0,06 2,7e+00 0,04 1,4e+01 0,04 1,1e+01 0,34 3,8e-01 0,27 3,1e-01 0,20 7,0e-01 0,16 5,7e-01 0,93 8,3e-02 0,75 6,7e-02 0,88 1,2e-01 0,71 9,4e-02 0,64 1,3e-02 0,52 1,1e-02 0,69 2,0e-02 0,56 1,6e-02 0,44 2,6e-03 0,36 2,1e-03 0,78 4,1e-03 0,63 3,3e-03 0,37 3,2e-04 0,30 2,6e-04 0,44 7,3e-04 0,36 5,9e-04 output inverter thermal grease ph ase change interface thermal grease phase change interface t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 0 10 - 5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 - 5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 200 400 600 800 1000 1200 1400 0 50 100 150 200 250 300 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt di r ec /dt 0 200 400 600 800 1000 0 2 4 6 8 10 12 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 / dt 25 / 125 25 / 125 copyright vincotech 9 re v ision: 4
v23990-p541-*2*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v ge = 15 v figure 23 out put inverter fwd figure 24 output inverter fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 c t j = 175 c output inverter 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 3 6 9 12 15 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) p tot (w) 0 3 6 9 12 15 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 4
v23990-p541-*2*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gat e voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 6 a t h = 8 0 oc v g e = 15 v t j = t jmax oc figure 27 out put inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical s hort circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v c e = 60 0 v v ce 400 v t j 150 oc t j = 150 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 1 0 0us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 10 20 30 40 50 60 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 16 10 11 12 13 14 15 v ge (v) t sc (s) 0 20 40 60 80 100 12 14 16 18 20 v ge (v) i c(sc) copyright vincotech 11 revision: 4
v23990-p541-*2*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 oc u c c minus =u ccplus switching mode : 3 level switching 0 3 6 9 12 15 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 4
v23990-p541-*2*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics typi cal output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 bra ke igbt figure 4 brake fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v b rake 0 5 10 15 20 25 30 0 1 2 3 4 v ce (v) i c (a) 0 1 2 3 4 5 6 7 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 4
v23990-p541-*2*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 32 i c = 6 a r go ff = 16 figur e 7 bra ke fwd figure 8 brake fwd typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 32 i c = 6 a brake t j = t jmax - 25c e rec t j = 25c e rec 0,00 0 ,02 0,04 0,06 0,08 0,10 0,12 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e r ec 0,00 0, 02 0,04 0,06 0,08 0,10 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0,00 0, 05 0,10 0,15 0,20 0,25 0 2 4 6 8 10 12 i c (a) e (mws) t j = t jmax -25c e off e o n e on t j = 25c e off 0,0 0 , 1 0,2 0,3 0,4 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 14 re v ision: 4
v23990-p541-*2*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 3 0 0 v v ce = 30 0 v v ge = 15 v v g e = 15 v r g on = 32 i c = 6 a r go ff = 16 figur e 11 bra ke igbt figure 12 brake fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 3, 0 63 k/w r thjh = 0,6 0 k/w r thjh = 4,0 9 k/w r thjh = 1,2 7 k/w brake thermal grease ph ase change interface thermal grease phase change interface t doff t f t don t r 0,00 0, 01 0,10 1,00 0 2 4 6 8 10 12 i c (a) t ( m s) t doff t f t don t r 0,00 0, 01 0,10 1,00 0 50 100 150 200 250 300 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 - 5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 - 5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 25 / 1 25 2 5 / 125 copyright vincotech 15 re v ision: 4
v23990-p541-*2*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 oc t j = 175 oc v ge = 15 v figure 15 bra ke fwd figure 16 brake fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 oc t j = 175 oc brake 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) p tot (w) 0 3 6 9 12 15 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) p tot (w) 0 3 6 9 12 15 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 4
v23990-p541-*2*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 25 0 s d = t p / t r thjh = 2,1 k/w figure 3 rec tifier diode figure 4 rectifier diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 oc t j = 150 oc input rectifier bridge 0 20 40 60 80 100 0,0 0,5 1,0 1,5 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 17 revision: 4
v23990-p541-*2*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic typi cal ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4 0 00 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 2 5 100 /25 11 25 )( tt b ertr copyright vincotech 18 revision: 4
v23990-p541-*2*-pm t j 125 c r gon 32  r goff 1 6  figure 1 out put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) ( t eon = integrating time for e on ) v g e (0%) = 0 v v g e (0%) = 0 v v ge (100%) = 15 v v g e (100%) = 15 v v c (100%) = 300 v v c (100%) = 300 v i c (100%) = 6 a i c ( 100%) = 6 a t do ff = 0,1 3 s t don = 0,0 1 s t eoff = 0,4 4 s t eon = 0,1 3 s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 300 v v c (100%) = 300 v i c (100%) = 6 a i c ( 100%) = 6 a t f = 0 ,1 2 s t r = 0,0 1 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 5 0 75 100 125 -0,2 0 0,2 0,4 0,6 time (us) % t doff t e off v ce i c v ge i c 10% v ge 10% t don v ce 3% -40 0 40 8 0 120 160 200 240 3 3,05 3,1 3,15 3,2 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 2 0 4 0 60 80 100 120 -0,1 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c 10% i c 90% -40 0 40 8 0 120 160 200 240 3 3,05 3,1 3,15 3,2 time(us) % t r v ce i c copyright vincotech 1 9 re vision: 4
v23990-p541-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p o ff (100%) = 1,7 9 kw p on (100%) = 1,7 9 kw e off (100%) = 0,1 9 mj e on (100%) = 0,1 0 mj t eoff = 0,4 4 s t eon = 0,1 3 s figure 7 out put inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn- off switching waveforms & definition of t rr v g eoff = 0 v v d ( 100%) = 300 v v geon = 15 v i d (100%) = 6 a v c ( 100%) = 300 v i rrm (100%) = 8 a i c ( 100%) = 6 a t rr = 0,1 6 s q g = 43, 26 nc switching definitions output inverter i c 1% v ge 90% -25 0 2 5 5 0 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % p off e o ff t eoff v ce 3% v ge 10% -40 0 40 8 0 120 160 200 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -5 0 5 10 15 20 -20 -10 0 10 20 30 40 50 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -160 -1 20 -80 -40 0 40 80 120 2,8 2,9 3 3,1 3,2 3,3 3,4 time(us) % i d v d fitted copyright vincotech 2 0 re vision: 4
v23990-p541-*2*-pm figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 6 a p r e c (100%) = 1,7 9 kw q rr (100%) = 0,4 3 c e rec (100%) = 0,0 9 mj t qrr = 0,3 3 s t erec = 0,3 3 s switching definitions output inverter t qrr -150 - 1 00 -50 0 50 100 150 2,8 3 3,2 3,4 3,6 % i d q rr time(us) -25 0 25 50 75 100 125 2,8 3 3,2 3,4 3,6 time(us) % p rec e rec t erec copyright vincotech 2 1 re vision: 4
v23990-p541-*2*-pm in datamatrix as p541-a28 p541-a29 p541-c28 p541-c29 pin x y 1 25.5 2.7 2 25.5 0 3 22.8 0 4 20.1 0 5 16.2 0 6 13.5 0 7 10.8 0 8 8.1 0 9 5.4 0 10 2.7 0 11 0 0 12 0 19.8 13 0 22.5 14 7.5 19.8 15 7.5 22.5 16 15 19.8 17 15 22.5 18 22.8 22.5 19 25.5 22.5 20 33.5 22.5 21 33.5 15 22 33.5 7.5 23 33.5 0 p541-a28 p541-a29 p541-c28 p541-c29 pinout ordering code & marking ordering code and marking - outline - pinout version without thermal paste 12mm housing without thermal paste 17mm housing without thermal paste 12mm housing without thermal paste 17mm housing in packaging barcode as pin table V23990-P541-C29-PM ordering code v23990-p541-a28-pm v23990-p541-a29-pm v23990-p541-c28-pm copyright vincotech 22 revision: 4
v23990-p541-*2*-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 4


▲Up To Search▲   

 
Price & Availability of V23990-P541-C29-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X